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Abstract. We study the stability of the results of the three-neutrino oscillation analysis of atmospheric
and reactor neutrino data under departures of the one dominant mass scale approximation. In order to do
so we perform the analysis of atmospheric and reactor neutrino data in terms of three-neutrino oscillations
where the effect of both mass differences is explicitly considered. We study the allowed parameter space
resulting from this analysis as a function of the mass splitting hierarchy parameter α = ∆m2/∆M2 which
parameterizes the departure from the one dominant mass scale approximation. We consider schemes with
both direct and inverted mass ordering. Our results show that in the analysis of the atmospheric data
the derived range of the largest mass splitting, ∆M2, is stable, while the allowed ranges of mixing angles
sin2 θ23 and sin2 θ13 are wider than those obtained in the one dominant mass scale approximation. Inclusion
of the CHOOZ reactor data in the analysis results in the reduction of the parameter space in particular for
the mixing angles. As a consequence the final allowed ranges of the parameters from the combined analysis
are only slightly broader than when obtained in the one dominant mass scale approximation.

1 Introduction

Super-Kamiokande (SK) high statistics data [2] indicate
that the observed deficit in the µ-like atmospheric events is
due to the neutrinos arriving in the detector at large zenith
angles, strongly suggestive of the νµ oscillation hypothe-
sis. Similarly, the latest SNO results [4,5] in combination
with the Super-Kamiokande data on the zenith angle de-
pendence and recoil energy spectrum of solar neutrinos [3]
and the Homestake [6], SAGE [7], and GALLEX+GNO
[8,9] experiments, have put on a firm observational basis
the long-standing problem of solar neutrinos [10], strongly
indicating the need for νe conversions.

Altogether, the solar and atmospheric neutrino anoma-
lies constitute the only solid present-day evidence for
physics beyond the standard model [11]. It is clear that
the minimum joint description of both anomalies requires
neutrino conversions among all three known neutrinos. In
the simplest case of oscillations the latter are determined
by the structure of the lepton mixing matrix [12], which,
in addition to the Dirac-type phase analogous to that of
the quark sector, contains two physical phases, associated
to the Majorana character of the neutrinos, which how-
ever are not relevant for the neutrino oscillation [13] and
will be set to zero in what follows. In this case the mixing
matrix U can be conveniently chosen in the form [14]




c13c12 s12c13 s13e−iδ

−s12c23 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13

s23s12 − s13c23c12eiδ −s23c12 − s13s12c23eiδ c23c13


 ,

(1)
where cij ≡ cos θij and sij ≡ sin θij . Thus the parameter
set relevant for the joint study of solar and atmospheric
conversions becomes six-dimensional: two mass differ-
ences, three mixing angles and one CP phase.

Results from the analysis of solar and atmospheric data
in the framework of the two-neutrino oscillation [15–18]
imply that the required mass differences satisfy

∆m2
� � ∆m2

atm. (2)

For sufficiently small ∆m2
� the three-neutrino oscillation

analysis of the atmospheric neutrino data can be per-
formed in the one mass scale dominance approximation
neglecting the effect of ∆m2

�. In this approximation it fol-
lows that the atmospheric data analysis restricts three of
the oscillation parameters, namely, ∆m2

31 = ∆m2
32, θ23

and θ13. This is the approximation used in [18–20]. Con-
versely for the solar neutrino analysis the effect of oscilla-
tions with ∆m2

atm can be taken to be averaged and solar
data constrains ∆m2

21, θ12 and θ13 [19,21]. In this approx-
imation the reactor neutrino data from CHOOZ provides
information on the atmospheric mass difference and the



418 M.C. Gonzalez-Garcia, M. Maltoni: Impact of two mass scale oscillations

M
m       

m       

m       

m       

m       

m       

1

2

3

3
2

2

1

2

NORMAL INVERTED

∆ 

m
∆ 

m
2

∆ 

Fig. 1. Our convention for the mass splitting and ordering

mixing angle θ13, and the CP phase δ becomes unobserv-
able.

However the assumption of one mass scale dominance
may not be a good approximation neither for reactor nor
for atmospheric data, in particular for ∆m2

� in its up-
per allowed values. Effects of the departure of the one
mass scale dominance approximation in the analysis of the
CHOOZ reactor data [22] have been included in [19,23,
24]. For atmospheric neutrinos in [27,18,29] it was shown
that oscillations with two mass scales of the order of 10−3

could give a good description of the existing data for some
specific values of the parameters. Some analytical approxi-
mate expressions for the effects of keeping both mass scales
in the description of atmospheric neutrinos are presented
in [25,26,28]. Furthermore [25,26] describe how the pres-
ence of the second mass scale can lead to an increase in
the number of sub-GeV electron events, which seems to
improve the description of the observed distribution.

To further explore this possibility and to verify the
consistence of the one dominant mass scale approxima-
tion we present in this work the result of the analysis of
the atmospheric and reactor neutrino data in terms of
three-neutrino oscillations where the effect of both mass
differences is explicitly considered and we compare our
results with those obtained under the assumption of one
dominant scale. Our aim is to study whether, and if so,
how the allowed parameter space is modified as a function
of the ratio between the two mass scales. Our study allows
us to establish the stability of the derived ranges of pa-
rameters for the large mass scale and mixings θ23 and θ13
independently of the exact value of the solar small scale
and mixing θ12 for which we only choose it to be within
the favored LMA region. Our results show that the allowed
ranges of parameters from the combined atmospheric plus
reactor data analysis are only slightly broader than when
obtained in the one dominant mass scale approximation.
Thus our main conclusion is that the approximation is self-
consistent. To establish the relevance of each data sample
on this conclusion we also present the partial results of
the analysis including only the atmospheric data or the
reactor data.

The outline of this paper is as follows. In Sect. 2 we
describe our notation for the parameters relevant for at-
mospheric and reactor neutrino oscillations with two mass
scales and discuss the results for the relevant probabilities.

In Sects. 3 and 4 we show our results for the analysis of
atmospheric neutrino and reactor data, respectively. For
atmospheric neutrinos we include in our analysis all the
contained events from the latest 1489 SK data set [2], as
well as the upward-going neutrino-induced muon fluxes
from both SK and the MACRO detector [30]. The results
for the combined analysis are described in Sect. 5. Finally
in Sect. 6 we summarize the work and present our conclu-
sions.

2 Three-neutrino oscillations
with two mass scales

In this section we review the theoretical calculation of the
conversion probabilities for atmospheric and reactor neu-
trinos in the framework of three-neutrino mixing, in order
to set our notation and to clarify the approximations used
in the evaluation of such probabilities.

In general, the determination of the oscillation prob-
abilities for atmospheric neutrinos require the solution of
the Schrödinger evolution equation of the neutrino sys-
tem in the Earth matter background. For a three-flavor
scenario, this equation reads

i
dν

dt
= Hν, H = U · Hd

0 · U† +V, (3)

where U is the unitary matrix connecting the flavor basis
and the mass basis in vacuum; it can be parameterized as
in (1). On the other hand Hd

0 and V are given by

Hd
0 =

1
2Eν

diag
(
0, ∆m2

21, ∆m2
31

)
, (4)

V = diag
(
±

√
2GFNe, 0, 0

)
, (5)

where ν ≡ (νe, νµ, ντ ). We have denoted by Hd
0 the vac-

uum Hamiltonian, while V describes the charged-current
forward interactions in matter [31]. In (5), the sign + (−)
refers to neutrinos (antineutrinos), GF is the Fermi cou-
pling constant and Ne is the electron number density in
the Earth (note also that for antineutrinos, the phase δ
has to be replaced with −δ).

The angles θij can be taken without any loss of gen-
erality to lie in the first quadrant θij ∈ [0, π/2]. Concern-
ing the CP violating phase δ we chose the convention
0 ≤ δ ≤ π and two choices of mass ordering (see Fig. 1),
one with m1 ≤ m2 ≤ m3 which we will denote as Normal
and the other with m3 ≤ m1 ≤ m2 which we will denote
by Inverted (for a recent discussion on other conventions
see, for instance [32]). We define ∆M2 > 0 to be the large
mass splitting in the problem and ∆m2 > 0 the small one.
In this case we can have the two mass orderings:

Normal: ∆M2 = ∆m2
31 = m2

3 − m2
1,

∆m2 = ∆m2
21 = m2

2 − m2
1, (6)

Inverted: ∆M2 = −∆m2
32 = m2

2 − m2
3,

∆m2 = ∆m2
21 = m2

2 − m2
1. (7)
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We define the mass splitting hierarchy parameter

α =
∆m2

∆M2 , (8)

which parameterizes the departure from the one domi-
nant mass scale approximation in the analysis of the at-
mospheric and reactor neutrinos.

In this convention, for both the Normal and Inverted
scheme, the mixing angles in (1) are such that in the one
mass dominance approximation in which ∆M2 (∆m2) de-
termines the oscillation length of the atmospheric (solar)
neutrinos, θ23 is the mixing angle relevant for atmospheric
oscillations, while θ12 is the relevant one for solar oscilla-
tions, and θ13 is mostly constrained by the reactor data.
In the likely situation in which the solar solution is LMA,
θ12 is mainly restricted to lie in the first octant.

We will restrict ourselves to the CP conserving sce-
nario. CP conservation implies that the lepton phase δ is
either zero or π [33]. As we will see, for non-vanishing α
and θ13 the analysis of atmospheric neutrinos is not ex-
actly the same for these two possible CP conserving values
of δ and we characterize these two possibilities in terms of
cos δ = ±1.

For α = θ13 = 0, atmospheric neutrinos involve only
νµ → ντ conversions, and in this case there are no matter
effects, so that the solution of (3) is straightforward and
the conversion probability takes the well-known vacuum
form

Pµµ = 1− sin2 (2θ23) sin2
(

∆M2L

4Eν

)
, (9)

where L is the path-length traveled by neutrinos of energy
Eν .

On the other hand, in the general case of the three-
neutrino scenario with θ13 �= 0 or α �= 0 the presence of
the matter potentials becomes relevant and it requires a
numerical solution of the evolution equations in order to
obtain the oscillation probabilities for atmospheric neu-
trinos Pαβ , which are different for neutrinos and antineu-
trinos because of the reversal of the sign in (5). In our
calculations, we use for the matter density profile of the
Earth the approximate analytic parameterization given in
[34] of the PREM model of the Earth [35].

In Figs. 2 and 3 we plot the angular distribution of the
atmospheric νe and νµ for non-vanishing values of α or
θ13 obtained from our numerical calculations. As seen in
these figures the main effect of a small but non-vanishing
α is mostly observable for sub-GeV electrons, although
some effect is also visible for multi-GeV electrons and sub-
GeV muons, and it can result either in an increase or in a
decrease of the expected number of events with respect to
the α = 0 prediction depending on whether θ23 is in the
first or second octant. This behavior can be understood
in terms of the approximate analytical expressions. For
instance for θ13 = 0 we find (in agreement with the results
in [25])

Ne

Ne0
− 1 = P e2r̄

(
c2
23 − 1

r̄

)
, (10)
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Fig. 2. Zenith-angle distributions (normalized to the no-
oscillation prediction) for the Super-Kamiokande e-like and
µ-like containing events, for the Super-Kamiokande stopping
and through-going muon events and for the MACRO upgoing
muons. The various dashed lines are the expected distribu-
tions for the Normal mass ordering with ∆M2 = 3×10−3 eV2,
tan2 θ12 = 0.45 and several values of sin2 θ13 and sin2 θ23, as
given in the figure

Nµ − Nµ(α = 0)
Nµ0

= −P e2c
2
23

(
c2
23 − 1

r̄

)
, (11)

where Ne0 and Nµ0 are the expected number of electron
and muon-like events in the absence of oscillations in the
relevant energy and angular bin and r̄ = Nµ0/Ne0. For
instance, for sub-GeV events r̄ ∼ 2. Here Nµ(α = 0) is the
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Fig. 3. Same as Fig. 2 but for the Inverted mass ordering

expected number of muon-like events for α = 0 and the
P e2 is the dominant α-dependent term in the probabilities,
averaged over energy and zenith angle. For neutrinos we
have

Pe2 = sin2 2θ12,m sin2
(

∆m2L

4Eν

sin 2θ12

sin 2θ12,m

)
, (12)

sin 2θ12,m =
sin 2θ12√

(cos 2θ12 − 2EνVe/∆m2)2 + (sin 2θ12)2
,

which for ∆m2 � 2EνVe reduces to

Pe2 = α2 sin2 2θ12

(
∆M2

2EVe

)2

sin2 VeL

2
. (13)

According to (10) and (11) the sign of the shift in the
number of predicted events with respect to the results in
the one mass scale dominance approximation is opposite
for electron- and muon-like events and it depends on the
factor c2

23 −(1/r̄) ∼ c2
23 −0.5. So for θ23 in the first octant,

c2
23 > 0.5, there is an increase (decrease) in the number
of electron (muon) events as compared to the α = 0 case.
For θ23 in the second octant the opposite holds. We also
see that the net shift is larger for electron events than for
muon events by a factor c2

23/r̄. Notice that, in spite of (13)
looking like of order α2, its numerical value for sub-GeV
electrons is large due to the factor ∆M2/(2EVe) as can
be seen from the figures. At higher energies, for up-going
muons the effect is negligible.

For the sake of comparison we also show in the figures
the behavior with non-vanishing value of θ13 in the one
mass scale dominance approximation. As seen in the figure
the effect is most important for the electron events and can
be understood as follows. For the case of constant matter
density the expected flux of νe events in the one mass scale
dominance approximation we find

Ne

Ne0
− 1 = P eµr̄

(
s2
23 − 1

r̄

)
, (14)

where

Peµ = 4s2
13,mc2

13,m sin2
(

∆M2L

4Eν

sin 2θ13

sin 2θ13,m

)
, (15)

sin 2θ13,m =
sin 2θ13√

(cos 2θ13 ∓ 2EνVe/∆M2)2 + (sin 2θ13)2
,

and the − (+) sign applies for the Normal (Inverted) case
(a similar expression is presented, for instance, in the last
article in [17] and in [36]). So for θ23 in the first octant
(s2

23 < 0.5) there is a decrease in the number of electron
events as compared to the θ13 case. For sub-GeV events,
the matter term in (15) can be neglected and the effect of
a non-vanishing θ13 is the same for Normal and Inverted
ordering. For multi-GeV and upgoing muon events matter
effects start playing a role and the effect becomes slightly
larger for the Normal case where the matter enhancement
is in the neutrino channel.

The situation becomes more involved when both α and
θ13 are different from zero. For instance, in lowest order in
α s13 the expected number of sub-GeV νe events is (after
averaging the ∆M2L/E oscillations)

Ne

Ne0
− 1 = P e2r̄

(
c2
23 − 1

r̄

)
+ P eµr̄

(
s2
23 − 1

r̄

)
(16)

+
r̄

2
cos δ sin 2θ13 sin 2θ23 sin 2θ12,m cos 2θ12,m

× sin2
(

∆m2L

4Eν

sin 2θ12

sin 2θ12,m

)

(this expression is in agreement with the results in [26]).
From this equation we see that the interference term (the
third term in the right hand side) can have either sign
depending on cos δ. It also changes sign depending on
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whether the ∆m2 oscillations are above (∆m2 cos 2θ12 >
2EνVe) or below (∆m2 cos 2θ12 < 2EνVe) the resonance.
For very small α (∆m2 � 2EνVe) the interference term
is proportional to α and it also changes sign for neutrinos
and antineutrinos. In summary the effect of non-vanishing
θ13 and α in the expected number and distribution of at-
mospheric neutrino events can have opposite signs, and
this can lead to a partial cancellation between both contri-
butions. This results in a loss of sensitivity of the analysis
to both parameters.

To analyze the CHOOZ constraints we need to evalu-
ate the survival probability for ν̄e of average energy E ∼
a few MeV at a distance of L ∼ 1 km. For these values of
energy and distance, one can safely neglect Earth matter
effects. The survival probability takes the analytical form

PCHOOZ
ee = 1− cos4 θ13 sin2 2θ12 sin2

(
∆m2

21L

4Eν

)

− sin2 2θ13

[
cos2 θ12 sin2

(
∆m2

31L

4Eν

)

+ sin2 θ12 sin2
(

∆m2
32L

4Eν

)]
(17)

� 1− sin2 2θ13 sin2
(

∆M2L

4Eν

)
,

where the second equality holds under the approxima-
tion ∆m2 � Eν/L which can only be safely made for
∆m2 ≤ 3× 10−4 eV2. Equation (17) is valid for both Nor-
mal and Inverted ordering with the identifications in (6)
and (7), respectively. As a result the probability for Nor-
mal and Inverted schemes is the same with the exchange
sin2 θ12 ↔ cos2 θ12. Thus in general the analysis of the
CHOOZ reactor data involves four oscillation parameters:
∆M2, θ13, ∆m2, and θ12. From (17) we see that for a
given value of θ12 and ∆M2 the effect of a non-vanishing
value of either θ13 or ∆m2 is a decrease of the survival
probability.

3 Atmospheric neutrino analysis

In our statistical analysis of the atmospheric neutrino
events we use all the samples of the SK data: e-like and
µ-like samples of sub- and multi-GeV [2] data, each given
as a 10-bin zenith angle distribution, and upgoing muon
data including the stopping (5 bins in zenith angle) and
through-going (10 angular bins) muon fluxes. We have also
included the latest MACRO [30] upgoing muon samples,
with 10 angular bins. So we have a total of 65 independent
inputs.

For details on the statistical analysis applied to the
different observables, we refer to the first reference in [17]
and [19]. As discussed in the previous section, the analysis
of the atmospheric neutrino data for three-neutrino oscil-
lations with two mass scales involves six parameters: two
mass differences, three mixing angles and one CP phase.
Our aim is to study the modification on the resulting al-
lowed ranges of the parameters ∆M2, sin2 θ23 and sin2 θ13

due to the deviations from the one dominant mass scale
approximation, i.e. for ∆m2 �= 0 (or equivalently for non-
vanishing values of the mass splitting hierarchy parame-
ter α). In what follows, for the sake of simplicity, we will
restrict ourselves to the CP conserving scenario, but we
will distinguish the two possible CP conserving values of
δ, and we characterize these two possibilities in terms of
cos δ = ±1. We will show the results for Normal and In-
verted schemes. Furthermore in most of our study we will
keep the mixing angle θ12 within the LMA range favored
in the global analysis of the solar neutrino data by choos-
ing a characteristic value tan2 θ12 = 0.45 [15,16]. We have
repeated our analysis for different values of θ12, and we
have found that the maximum effect due to the variation
of θ12 is a shift on ∆χ2 ∼ 1 and it is therefore unobserv-
able. Furthermore, we have verified that the atmospheric
data analysis does not provide enough precision to test
the possibility of non-vanishing CP violation.

We first present the results of the allowed parameters
for the global combination of atmospheric observables.
Notice that since the parameter space we study is four-
dimensional the allowed regions for a given CL are de-
fined as the set of points satisfying the condition for four
degrees of freedom (d.o.f.)

χ2
atm(∆M2, θ23, θ13, ∆m2)−χ2

atm,min ≤ ∆χ2(CL, 4 d.o.f.),
(18)

where ∆χ2(CL, 4 d.o.f.) = 7.78, 9.49, 13.3 and 16.25 for
CL = 90%, 95%, 99% and 99.73% ≡ 3σ respectively, and
χ2

atm,min is the global minimum in the four-dimensional
space. The best fit point used to define the allowed pa-
rameter space is found to be

∆M2 = 3.3× 10−3 eV2,

sin2 θ23 = 0.46,
sin2 θ13 = 0, (19)

∆m2 = 1.0× 10−3 eV2 (α = 0.30),
χ2

atm,min = 39.0

(for 61 d.o.f.) and it corresponds to Normal ordering al-
though the difference with the Inverted ordering (∆χ2 =
0.1) is not statistically significant1. The point given in
(19) is the global minimum used in the construction of
the ∆χ2

atm function shown in Figs. 4 and 6, of the allowed
parameter space shown in Fig. 5 and in the lower panels
of Fig. 7, and of the ranges in Table 1.

This result can be compared with the best fit point
obtained in the one dominant mass scale approximation
α = 0

∆M2 = 3.0× 10−3 eV2,

sin2 θ23 = 0.54,
sin2 θ13 = 0.14, (20)

χ2
atm,min = 39.6

1 The careful reader may notice that the χ2 per d.o.f. seems
too good. This was already the case for the previous Su-
perKamiokande data sample and it is partly due to the very
good agreement of the multi-GeV electron distributions with
their no-oscillation expectations
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Fig. 4. Dependence of the ∆χ2
atm and ∆χ2

atm+CHOOZ func-
tions on the mass splitting parameter α for tan2 θ12 = 0.45,
for the analysis of atmospheric neutrinos alone (lower panel)
and also in combination with the CHOOZ reactor data (upper
panel)

(for 62 d.o.f., one more than in the α-unconstrained case)
which is independent of the choice cos δ = ±1 and cor-
responds to the Inverted scheme. Notice that this is the
minimum used to obtain the allowed parameter space in
the one dominant mass scale approximation [the upper
panels in Fig. 7 and the ranges in Table 2], since in this
case we are fixing a priori α = 0.

In summary, we find that allowing for a non-zero value
of α very mildly improves the quality of the global fit.
This result is driven by the better description of the sub-
GeV data which is attainable for a non-zero α value, and
drives the best fit point to the first octant of the mix-
ing angle θ23 for which the expected number of sub-GeV
electrons is larger as compared to the pure νµ → ντ sce-
nario, as illustrated in Figs. 2 and 3. We find, however,
that the analysis of the atmospheric neutrino data does
not show a strong dependence on large α values. In the
lower panel of Fig. 4 we show the dependence of ∆χ2

atm
on α. In this plot all the neutrino oscillation parameters
which are not displayed have been “integrated out”, i.e.
the ∆χ2

atm function is minimized with respect to all the
non-displayed variables. From this figure we see that the
fit to the atmospheric neutrinos is only weakly sensitive
to the value of α.

In Fig. 5 we present sections of the allowed volume
in the (cos δ sin2 θ23, ∆M2) plane for different values of
sin2 θ13 and for values of ∆m2 = 0 (first row) and ∆m2 =
3×10−4 eV2 (second row) which is the ( maximum allowed
value by the present analysis of the solar neutrino data
including the latest 1496 days of SK and day–night spec-
trum of the SNO data [15]. For illustration we also show
the corresponding regions for the “democratic” scenario
α = 0.5 (∆m2 = ∆M2/2). We display the corresponding
sections for the Normal and Inverted schemes.

Comparing the sections in Fig. 5 for α = 0 with the
corresponding sections for non-vanishing α values we find
that substantial differences appear although mainly for

Table 1. Arbitrary α

Normal Inverted

1.3 ≤ ∆M2

10−3 eV2 ≤ 8.1 1.2 ≤ ∆M2

10−3 eV2 ≤ 9.6
cos δ = 1

0.22 ≤ sin2 θ23 ≤ 0.79 0.14 ≤ sin2 θ23 ≤ 0.78
sin2 θ13 ≤ 0.48 sin2 θ13 ≤ 0.58

cos δ = −1
0.19 ≤ sin2 θ23 ≤ 0.79 0.22 ≤ sin2 θ23 ≤ 0.95

sin2 θ13 ≤ 0.48 sin2 θ13 ≤ 1

Table 2. α = 0 (no dependence on cos δ)

Normal Inverted

1.3 ≤ ∆M2

10−3 eV2 ≤ 8.1 1.3 ≤ ∆M2

10−3 eV2 ≤ 10.0
0.32 ≤ sin2 θ23 ≤ 0.79 0.32 ≤ sin2 θ23 ≤ 0.78

sin2 θ13 ≤ 0.49 sin2 θ13 ≤ 0.58

large values of θ13. However, from these figures one also
realizes that even for large values of α the allowed region
does not extend to a very different range of ∆M2. Con-
versely, the mixing angles θ23 and θ13 can become less
constrained when the case α �= 0 is considered.

To further quantify these effects we plot in Fig. 6 the
dependence of ∆χ2

atm on ∆M2, θ23 and θ13, respectively,
for different values of α, after minimizing with respect to
all the non-displayed variables. From these figures we can
read the 3σ allowed ranges for the different parameters (1
d.o.f.) and find the results in Tables 1 and 2

Comparing the ranges in Tables 1 and 2 we see that the
parameter which is less sensitive to the departure from the
one mass scale dominance approximation is ∆M2, while
sin2 θ13 is the mostly affected, in particular for the In-
verted scheme for which no upper bound on sin2 θ13 is
derived from the analysis. The careful reader may notice
that for the Normal ordering the bound on θ13 for arbi-
trary α can be stronger than for α = 0. This is due to the
fact that the ranges in Tables 1 and 2 are defined in terms
of 3σ shifts in the χ2 function with respect to the minima
in (19) and (20) respectively [see the explanation below
(20)].

Finally we show in Fig. 7 the two-dimensional allowed
regions in (cos δ sin2 θ23, ∆M2) from the analysis of the
atmospheric neutrino data independently of the values of
α and θ13. In constructing these regions for each value of
∆M2 and cos δ sin2 θ23 we have minimized on the oscilla-
tion parameters ∆m2 and θ13 so they are defined in terms
of ∆χ2 for 2 d.o.f. (∆χ2 = 4.61, 5.99, 9.21, 11.8 for 90%,
95%, 99% CL and 3σ respectively). For the sake of com-
parison we show in the figure the corresponding regions
for α = 0. From the figure we see that the differences are
larger for the Inverted scheme.

4 Analysis of CHOOZ data

The CHOOZ experiment [22] searched for the disappear-
ance of ν̄e produced in a power station with two pressur-
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Fig. 5. 90%, 95%, 99% and 3σ (4 d.o.f.) allowed regions in the (sin2 θ23, ∆M2) plane, for different values of sin2 θ13 and ∆m2,
from the analysis of the atmospheric neutrino data. The global minimum used to define the allowed regions is given in (19); the
local minima are marked with a dot
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Fig. 6. Dependence of the ∆χ2
atm function on the mixing angles cos δ sin2 θ23 and cos δ sin2 θ13 and on the large mass scale

∆M2, for different values of α and for the Normal (upper panels) and Inverted (lower panels) cases. See text for details

ized-water nuclear reactors with a total thermal power of
8.5GW (thermal). At the detector, located at L � 1 km
from the reactors, the ν̄e reaction signature is the delayed
coincidence between the prompt e+ signal and the signal
due to the neutron capture in the Gd-loaded scintillator.
Their measured versus expected ratio, averaged over the
neutrino energy spectrum is

R = 1.01± 2.8%(stat) ± 2.7%(syst). (21)

Thus, no evidence was found for a deficit of measured ver-
sus expected neutrino interactions, and they derive from
the data exclusion plots in the plane of the oscillation
parameters (∆m2, sin2 2θ) in the simple two-neutrino os-
cillation scheme. At 90% CL they exclude the region given
approximately by ∆m2 > 7 · 10−4 eV2 for maximum mix-
ing, and by sin2(2θ) > 0.10 for large ∆m2. Similar searches
have been performed at the Palo Verde Reactor Experi-
ment [37] leading to slightly weaker bounds.

In order to combine the CHOOZ bound with the re-
sults from our analysis of atmospheric neutrino data in
the framework of three-neutrino mixing we have first per-
formed our own analysis of the CHOOZ data. Using as ex-
perimental input their measured ratio (21) [22] and com-
paring it with the theoretical expectations we define the
χ2

CHOOZ function. We verified that with our χ2
CHOOZ func-

tion and using the statistical criteria for two degrees of
freedom we reproduce the excluded regions given in [22]

as can be seen in the upper row of Fig. 82. As discussed
in Sect. 2 for the analysis of the reactor data the relevant
oscillation probability depends in general on the four pa-
rameters θ12, ∆m2, θ13, and ∆M2. In Fig. 8 we show the
excluded regions at 90, 95 and 99% CL and 3σ in the
(sin2 θ13, ∆M2) plane from our analysis of the CHOOZ
data for several values of ∆m2 and tan2 θ12 = 0.45; for the
sake of comparison with the two-family analysis we have
defined the allowed regions for 2 d.o.f. (∆χ2

CHOOZ = 4.61,
5.99, 9.21, 11.83 respectively). In the left (right) panel we
show the results for the Normal (Inverted) scheme. We see
that the presence of a non-vanishing value of ∆m2 results
in a slightly smaller allowed range of (∆M2, sin2 θ13). For
the chosen value of tan2 θ12 the reduction for smaller val-
ues of ∆M2 is slightly more significant for the Normal
than for the Inverted scheme as also shown in [23]. This
can easily be understood from the expression of the sur-
vival probability: from (17), we get

PCHOOZ
ee,NOR − PCHOOZ

ee,INV = − sin2 2θ13(cos2 θ12 − sin2 θ12)

×
[
sin2

(
∆M2L

4Eν

)
− sin2

(
(∆M2 − ∆m2)L

4Eν

)]
. (22)

2 For the sake of simplicity we chose not to include the energy
dependence of the CHOOZ data, for this adds very little to our
knowledge of the parameter space as can be seen by comparing
our results in Fig. 8 with those of the CHOOZ collaboration [22]
or the corresponding ones in the analysis of [23]
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Fig. 7. 90%, 95%, 99% and 3σ (2 d.o.f.) allowed regions in
the (cos δ sin2 θ23, ∆M2) plane from the analysis of the atmo-
spheric neutrino data, for the Normal (left panels) and Inverted
(right panels) cases, for tan2 θ12 = 0.45 and for arbitrary val-
ues of θ13 and α (lower panels). See text for details. The upper
panels correspond to the case α = 0. The best fit point in each
case is marked with a star. The local minima are marked with
a dot

Thus for θ12 ≤ π/4 the survival probability is smaller for
the Normal ordering than for the Inverted one, which leads
to the stronger constraint. For ∆M2 � ∆m2, (22) van-
ishes and the excluded regions in the two schemes become
indistinguishable.

5 Combined analysis

We now describe the effect of including the CHOOZ re-
actor data together with the atmospheric data samples in
a combined three-neutrino χ2 analysis. The results of this
analysis are summarized in the upper panel of Fig. 4 and
in Figs. 9-10. As in Sect. 3, in most of the results shown
here we fix the mixing angle tan2 θ12 = 0.45 and study
how the allowed ranges of the parameters ∆M2, sin2 θ23
and sin2 θ13 depend on α.

We find that, in this case, the best fit point for the
combined analysis of atmospheric and CHOOZ data is
practically insensitive to the choice of Normal or Inverted
schemes, and

∆M2 = 2.8× 10−3 eV2,

sin2 θ23 = 0.46,
sin2 θ13 = 0, (23)

∆m2 = 2.8× 10−4 eV2 (α = 0.1),
χ2

atm+CHOOZ,min = 39.8

Fig. 8. 90%, 95%, 99% and 3σ (2 d.o.f.) allowed regions from
the analysis of the CHOOZ reactor data in the (sin2 θ13, ∆M2)
plane for different values of ∆m2 (tan2 θ12 = 0.45), for the
Normal (left panels) and Inverted (right panels) cases

for 62 d.o.f. and cos δ = ±1. Notice that in our analysis
the CHOOZ data add only one data point. Note that the
point given in (23) is the global minimum used in the con-
struction of the ∆χ2

atm+CHOOZ function shown in Figs. 4
and 9, of the allowed regions in the lower panels of Fig. 10,
and in the ranges in Table 3.

For α = 0 the best fit point is at

∆M2 = 2.5× 10−3 eV2,

sin2 θ23 = 0.49(∼ 0.51),
sin2 θ13 = 0.005, (24)

χ2
atm+CHOOZ,min = 40.2

for 63 d.o.f. This is the minimum used to obtain the al-
lowed parameters in the one dominant mass scale approx-
imation: the upper panels in Fig. 10 and the ranges in
Table 4.

In the upper panel of Fig. 4 we show the dependence
of ∆χ2

atm+CHOOZ on α. From this figure we see that the
inclusion of the CHOOZ reactor data results in a stronger
dependence of the analysis on the value of ∆m2 (or equiv-
alently on α), and large values of the mass splitting hierar-
chy parameter become disfavored. Also the dependence is
stronger for the Normal scheme, as expected (see discus-
sion below (22)). As a consequence the ranges of mixing
parameters – which, in the analysis of atmospheric data
alone, were broadened in the presence of large values of α
– are expected to become narrower with the inclusion of
the CHOOZ data in the analysis.

This effect is explicitly shown in Fig. 9, where we plot
the dependence of the ∆χ2

atm+CHOOZ on ∆M2, θ23 and
θ13, respectively, for different values of α (to be compared
with the corresponding Fig. 6 for the analysis of the atmo-
spheric data). Figure 9 is shown for the Inverted scheme.
(The corresponding figure for the Normal scheme is very
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Fig. 9. Dependence of the ∆χ2
atm+CHOOZ function on the mixing angles cos δ sin

2 θ23 and cos δ sin2 θ13 and on the large mass
scale ∆M2, for different values of α and for the Inverted case. See text for details

Table 3. For arbitrary α

Normal Inverted

1.3 ≤ ∆M2

10−3 eV2 ≤ 5.4 1.3 ≤ ∆M2

10−3 eV2 ≤ 5.2
cos δ = ±1

0.26 ≤ sin2 θ23 ≤ 0.71 0.26 ≤ sin2 θ23 ≤ 0.70
sin2 θ13 ≤ 0.06 sin2 θ13 ≤ 0.07

Table 4. For α = 0

Normal Inverted

1.3 ≤ ∆M2

10−3 eV2 ≤ 5.1 1.3 ≤ ∆M2

10−3 eV2 ≤ 5.0
0.31 ≤ sin2 θ23 ≤ 0.71 0.31 ≤ sin2 θ23 ≤ 0.70

sin2 θ13 ≤ 0.07 sin2 θ13 ≤ 0.07

similar.) This figure illustrates that indeed the inclusion
of the CHOOZ data in the analysis results in a reduction
of the allowed ranges for the mixing angles, in particular
θ13. From this analysis we obtain the 3σ allowed (1 d.o.f.)
bounds of Tables 3 and 4.

Comparing with the results in Table 1 we see that in-
cluding the CHOOZ reactor data reduces the effect on the
final allowed range of parameters arising from allowing de-
partures from the one mass scale dominance approxima-
tion. In other words the ranges in Tables 3 and 4 are not
very different.

Figure 10 shows the global two-dimensional allowed
regions in (cos δ sin2 θ23, ∆M2) from the analysis of the
atmospheric neutrino and CHOOZ reactor data for opti-
mized values α and θ13 as well as the results for the one
mass scale dominance approximation α = 0 case. Compar-
ison with Fig. 7 shows that after including the CHOOZ
reactor data the allowed range of parameters ∆M2 and
sin2 θ23 becomes more “robust” and it is almost indepen-
dent of the Normal or Inverted ordering of the masses or
of the particular choice of cos δ = ±1.

How large would α and/or θ13 have to be for three-
neutron effects to be visible in the global analysis? We

Fig. 10. 90%, 95%, 99% and 3σ (2 d.o.f.) allowed regions in
the (cos δ sin2 θ23, ∆M2) plane, from the analysis of the atmo-
spheric and CHOOZ neutrino data with tan2 θ12 = 0.45, for
the Normal (left panels) and Inverted (right panels) cases and
for arbitrary values of θ13 and α (lower panels). See text for
details. The upper panels correspond to the case α = 0. The
best fit point in each case is marked with a star. The local
minima are marked with a dot

find that in order to have a 3σ effect on the global analysis
either tan2 θ13 should be larger than 0.07 or α should be
larger than 0.4.

6 Summary

In this article we have explored the effect of keeping the
two mass scales on the three-flavor oscillation analysis of
the atmospheric and reactor neutrino data. First we have
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performed the independent analyses of the atmospheric
neutrino data and of the CHOOZ data. We have studied
the allowed parameter space resulting from these analyses
as a function of the mass splitting hierarchy parameter
α = ∆m2/∆M2 which parameterizes the departure from
the one dominant mass scale approximation. Finally we
have studied the effect of keeping the two mass scales on
the combined analysis.

In general the analysis of atmospheric data involves
six parameters: two mass differences, which we denote by
∆M2 and ∆m2, three mixing angles (θ23, θ13 and θ12) and
one CP phase (δ). The analysis of the reactor data in-
volves four of these parameters, namely, ∆M2 and ∆m2,
θ13 and θ12. For the sake of simplicity we have concen-
trated on the dependence on ∆m2 while keeping the CP
phase fixed to CP conserving values and the mixing an-
gle θ12 to be within the LMA range favored in the global
analysis of the solar neutrino data by choosing a charac-
teristic value tan2 θ12 = 0.45. We have verified that the at-
mospheric data alone or in combination with the CHOOZ
data is not sensitive enough to give any constraint on the
possibility of CP violation nor to variations of the tan2 θ12
within the allowed LMA range. Thus our conclusions are
robust.

Our results can be summarized as follows.

(1) The dominant effect of a non-vanishing value of α in
the atmospheric neutrino events is an increase (decrease)
of the expected number of contained νe for θ23 in the first
(second octant) as previously discussed in [25,26].
(2) In the predicted atmospheric neutrino events the ef-
fects of a non-vanishing α and of the mixing angle θ13 can
have opposite signs and a certain degree of cancellation
may occur between both effects.
(3) The survival probability of ν̄e at CHOOZ decreases
for increasing values of θ13 and α, so that the effect of
both parameters is additive in the CHOOZ reactor data.
For θ12 ≤ π

4 the effect of ∆m2 is slightly stronger for the
Normal mass ordering [23,24].
(4) Allowing for a non-zero value of α very mildly im-
proves the quality of the atmospheric neutrino fit as a
consequence of the better description of the sub-GeV elec-
tron data. This effect drives the best fit point to the first
octant of the mixing angle θ23.
(5) Still the fit to atmospheric neutrinos is very insensitive
to large values of α as long as all other parameters are
allowed to vary accordingly.
(6) As a consequence the allowed range of sin2 θ13 and
sin2 θ23 from the atmospheric neutrino data analysis be-
comes, in general, broader than the one for the α = 0
case.
(7) On the other hand the allowed range of ∆M2 obtained
from the atmospheric neutrino data fit is stable under de-
partures from the one mass scale dominance approxima-
tion.
(8) The inclusion of the CHOOZ reactor data in the anal-
ysis leads to a stronger dependence of the results on the
value of α, with smaller values of α and θ13 favored.
(9) As a consequence the final determination of the al-
lowed ranges for both ∆M2 and the mixing angles θ23 and

θ13 is very robust and the ranges are only slightly differ-
ent from those obtained in the one mass scale dominance
approximation.
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